CAND C PUMPS AND SUPPLY ILLINOIS RURAL WATER ASSOCIATION OBLONG, IL HYDRAULICS TRAINING SESSION | DECEMBER 6, 2022

OGLOBAL PUMP 866-360-PUMP

www.globalpump.com

ENGINEERED SOLUTIONS · QUALITY PRODUCTS · EXCEPTIONAL SERVICE

PRESSURE VS. HEAD | WHAT!?!

PUMPS & SUPPLY Marion, Ol 618-997-2311

PRESSURE HEAD IS AN ALTERNATIVE WAY OF DESCRIBING PRESSURE

INSTEAD OF GIVING UNITS AS FORCE PER UNIT AREA (PSI – POUNDS PER SQUARE INCH)

PRESSURE IS EXPRESSED AS DEPTH IN A LIQUID AT WHICH PRESSURE EQUALS PRESSURE OF INTEREST

WHAT!?!

PRESSURE VS. HEAD | WHAT!?!

618-997-2311

PRESSURE IS EXPRESSED AS DEPTH IN A LIQUID AT WHICH PRESSURE EQUALS PRESSURE OF INTEREST

PRESSURE VS. HEAD | WHAT!?! Marion Ol 618-997-2311 PRESSURE IS EXPRESSED AS DEPTH IN A LIQUID AT WHICH PRESSURE EQUALS PRESSURE OF INTEREST 1. 1 PSI = 2.31' OF HEAD 2. IT DOESN'T MATTER PIPE SIZE 3. 2.31' OF WATER WEIGHS 1 POUND PER IN² 4. WE'RE NOT MEASURING TOTAL WEIGHT 5. WE WANT TO KNOW HOW MUCH WATER 231' 231' HEAD WEIGHS PER IN² 6. THAT IS 2.31' OF WATER HEAD = 1 PSI 7. IT DOES HAVE TO BE WATER WITH SG = 1.0 100 PSI 100 PSI CLA-VAL **GLOBAL PUMP** KEEN PUMP CO. CORNELL **AMERICAN-MARSH PUMPS** 866-360-PUMP CINEERED PRODUCTS www.globalpump.com A WILL O COMPANY

WHY CAN'T WE FEEL ATMOSPHERIC PRESSURE?

AT SEA LEVEL, THE ATMOSPHERE IS BEARING DOWN ON US AT 14.7 PSI (BOWLING BALL ON THUMB)
 WE CAN'T FEEL IT BECAUSE THE AIR IN OUR BODIES EXERTS SAME PRESSURE OUTWARDS:

THERE'S NO PRESSURE DIFFERENCE AND NO NEED TO EXERT ANY EFFORT | FISH CAN!

WATER BOILS AT 212° F, RIGHT?

618-997-2311

WATER BOILS AT 212° F, RIGHT?

WATER OCCUPIES 100% OF VOLUME

ØGLOBAL PUMP 866-360-PUMP www.globalpump.com

CORNELL AMERICAN-MARSH PUMPS A WILO COMPANY

YOUR PREMIERE PUMP CHOICE

HOW DOES A CENTRIFUGAL PUMP WORK?

618-997-2311

BERNOULI'S PRINCIPLE

BP STATES: "...FOR AN IDEAL FLUID WITH LOW VISCOSITY, AN INCREASE OF THE SPEED OF THE FLUID OCCURS SIMULTANEOUSLY WITH A DECREASE IN PRESSURE ...".

SPEED IT UP | DROP THE PRESSURE – SLOW IT DOWN | INCREASE THE PRESSURE

SPEED IT UP | DROP THE PRESSURE - SLOW IT DOWN | INCREASE THE PRESSURE

HOW TO CHANGE HEAD | CHANGE IMPELLER SPEED

SPEED UP – DROP PRESSURE | ANOTHER EXAMPLE

RECIRCULATION | TWO (2) TYPES

618-997-2311

50 FT POWER CABLE (UL / CSA / MSHA approved - custom length and optio

CABLE ENTRY SEALING SYSTEM (FKM compression fitting with SS gland nut and seal cable. Ind isolated and potting power leads to prevent wicking)

HEAVY DUTY LIFTING RINGS (To easily lift & transport the pump)

NPT DISCHARGE (Hose couplings also available

HARDENED DUCTILE TOP DISCHARGE MOTOR HOUSING

(Twice as abrasion resistant (300 BHN) as ductile iron. Top discharge design allows for superior motor cooling and slim profile for fitting tight spaces)

HEAVY DUTY BALL BEARINGS (Double shielded grease lube bearings designed to extend bearing life under heavier specific gravity slurries)

DUAL MECHANICAL SEALS (SIC X 2) (Abrasion resistant Silicon Carbide seals in separate oil chamber to protect the motor)

OPTIONAL Seal Minder® MOISTURE DETECTION SYSTEM (Provides early warning to protect motor)

SHAFT SLEEVE (Easily replaceable, saves on shaft wear and prevents solid migration into seal chamber)

HARDENED DUCTILE IRON VOLUTE (Hardened ductile iron (300 BHN) volute is standard. Optional coatings are available to extend the volute life under severely abrasive services)

CHROME IRON IMPELLER (28% chrome iron slurry type semi-open impeller design to handle the most abrasive slurries)

CHROME IRON WEAR PLATE

(28% high chrome iron replaceable wear plate. Will keep pump performance like new longer, under the most demanding applications)

-CHROME IRON AGITATOR

(28% high chrome iron hard metal agitator. Designed to agitate settled solids for easier pumping and removal)

-LARGE OPEN STRAINER/STAND (Keeps pump suction off the bottom to allow agitation of solids and protects pump inlet from larger solids that could block the impeller)

1. RECIRCULATION IS NOT SYMMETRICAL | THIS CAUSES VIBRATION

2. TYPICAL CLEARANCE: 0.020" - 0.025" (CI) | 0.025" - 0.030" (SS) | DIME: 0.053"

BEP OPERATION | INCREASES RELIABILITY

- 1. WHY DOES THE PUMP BECOME UNSTABLE?
- 2. THERE IS ALREADY UNEVEN PRESSURE DISTRIBUTION | RECIRCULATION AMPLIFIES IMBALANCE

DIFFERENT PUMP DESIGNS | DIFFERENT RELIABILITY

GLOBAL PUMP 866-360-PUMP www.globalpump.com

SUBMERSIBLE

MORE FORGIVING OFF BEP

MOST FORGIVING OFF BEP

VERTICAL TURBINE

PIPING SYSTEM DESIGN | STATIC HEAD

618-997-2311

PIPING SYSTEM DESIGN | STATIC HEAD

Marion, Ol 618-997-2311

PIPING SYSTEM DESIGN | CALCULATING THE DUTY POINT

TOTAL DYNAMIC HEAD (TDH)

TDH = STATIC + FRICTION

STATIC HEAD – Water Level to Water Level – Static Head Changes as Level Changes.

FRICTION HEAD – Calculated from Following:

- Required Flow Rate.
- Pipe Length.
- Pipe Diameter.
- Pipe Material (Determines Roughness).
- · Miscellaneous Fittings.
- Fluid Viscosity.

TDH INCREASES WITH FLOW

ENGINEERED PRODUCT

A WILL COMPANY

PIPING SYSTEM DESIGN | HAZEN AND WILLIAMS FORMULA

HAZEN AND WILLIAMS FORMULA – Used to Calculate Friction Loss:

Friction Loss $-h_f = 0.002083 L (100/C)^{1.85} x GPM^{1.85}/d^{4.8655}$

- h_f = Head Loss Due to Friction (ft).
- L = Length of Pipe Including Equivalent Length through Fittings (ft).
- C = Friction Factor for Hazen & Williams.
- GPM = Flow Rate (GPM).
- d = Inside Diameter of Circular Pipe (in) Beware of DR Ratings.

This Formula is Good for any Liquid Having a Viscosity in the Range of 1.130 Centistokes (Property of Water at 60° F).

PIPING SYSTEM DESIGN | HAZEN AND WILLIAMS C FACTORS

HAZEN AND WILLIAMS C FACTORS – Relates to Pipe Roughness:

PUMPS & SUPPL Marion, Ol 618-997-2311

TYPE OF PIPE	RANGE	AVG NEW	COMMON DESIGN
Cement Asbestos	160 – 140	150	140
Cement Lined Iron or Steel		150	140
Welded & Seamless Steel	150 – 80	130	100
Wrought Iron, Cast Iron	150 – 80	130	100
Tar-Coated Cast Iron	145 – 50	130	100
Concrete	152 – 85	120	100
Corrugated Steel		60	60
PVC		140	120
HDPE	150 – 130	150	140

Source: Cameron Hydraulic Data, 18th Edition.

AMERICAN-MARSH PUMPS

PIPING SYSTEM DESIGN | EQUIVALENT PIPE LENGTH

FRICTION LOSS CALCULATOR | SPREADSHEETS ARE YOUR FRIENDS!

SUCTION PIPING

36"

48'

26" 28" 30" 54"

crement 50	x, z-1-10			20 D	·*		27	ID= L(k)=
FLOW		TDH START	PSI	HP (INPUT EFFC'Y)	RESID (PSI)	DYNAMIC SUCTION	STATIC SUCTION LIFT	DISCHAR
GPM		TDH	PSI	0.000	ft	hr	hs	Hsd
0	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
100	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
150	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
200	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
250	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
300	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
350	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
400	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
450	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
500	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
550	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
600	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
650	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
700	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
750	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
800	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
850	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
900	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
950	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,000	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,050	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,100	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,150	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,200	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,250	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,300	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,350	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,400	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,450	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.500	GPM at	0.0	0.0	0.0	0.0	0.0	0.0	0.0

# of Pa	arallel Lines =	1	1
0	D=	125	125
I	D=	4.00	4.00
L	(k)=	0	0
DISCI	HARGE	SUCTION	FRICTION
H	AD	HE	AD
H	Isd	hf	hf
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
	0.0	0.0	0.0
(0.0	0.0	0.0
	0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
	0.0	0.0	0.0
(0.0	0.0	0.0
	0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
	0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0
	0.0	0.0	0.0
(0.0	0.0	0.0
(0.0	0.0	0.0

90 Degree Elbow 45 Degree Elbow Check Valve Gate Valve (100%) Butterfly T-Branch T-Run Road Ramp Screen Entrance Exit Manifold d/D (1/4) Increase d/D (1/2) Increase d/D (3/4) Increase d/D (1/4) Reduce d/D (1/2) Reduce d/D (3/4) Reduce

DELLER

6.00	6.00	6.00	6.00	6.00
0	0	0	0	0
	DISCHAF		ON HEAD	
hf	h	h	hr	h
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

0

0

0

A WILO COMPANY

DISCHARGE PIPING

1

145

1

145

145

1

1

145 145

4	· ·		· ·		10	14	1.4	10	10	20	~~	47	20	20	00	00		
2.375	3.5	4.5	6.625	8.625	10.75	12.75	14	16	18	20	22	24	26	28	30	36	48	54
17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
2.08	3.06	3.94	5.80	7.55	9.41	11.16	12.25	14.00	15.76	17.51	19.26	21.01	22.76	24.51	26.26	31.51	42.01	47.27
						· · · · ·		_				-						
SUC'				DISCHA	RGE VE	LOCITY			SUC VELC			DI	SCHARG	E VELO	CITY HE	AD		FLOW
fps	fps]	fps	fps	fps	fps	fps]]	ft	ft		ft	ft	ft	ft	ft		GPM
]																0
																		50
																		100
																		150
																		200
																		250
																		300
																		350
																		400
																		450
																		500
																	4	550
					_	_	_						_					600
																		700
																		750
				_			_							_			1 1	800
	1																	850
_														_			1 1	900
		1																950
		1						1 1									1 1	1,000
	l.	1									1							1,050
		1						1			1							1,100
		1						1			1							1,150
		1						1			1							1,200
		1						1			1							1,250
]																1,300
																		1,350
																		1,400
																		1,450
																	[1 500

HDPE ID CHART

2" 3" 4" 6" 8" 10" 12" 14" 16" 18" 20" 22" 24"

€. CORNELL ENGINEERED PRODUCTS

0

OPERATING YOUR PUMP ON THE CURVE | VARIABLE SPEED PROBLEMS

OPERATING YOUR PUMP ON THE CURVE | VARIABLE SPEED PROBLEMS

NOL | NON-OVERLOADING OVER THE ENTIRE RANGE OF THE CURVE

CAVITATION | WHAT IS IT?

Eliminate Cavitation:

- Cavitation Decreases Flow through the Pump.
- Cavitation Drastically Reduces the Life of the Pump (Vibration and Erosion).

What is Cavitation?:

- Accelerating a Fluid to High Velocities Creates a Drop in Pressure (Bernoulli).
- This Drop can Lower the Fluid Pressure to the Fluid's Vapor Pressure or Below.
- At this Point, the Fluid "Boils" Changing from a Liquid to a Vapor.
- As the Fluid Changes Phase During Cavitation, Tiny Bubbles Form.
- Since Vapor Takes Up Considerably More Volume than Fluid, these Bubbles Decrease Flow through the Pump.
- As the Liquid Travels Along the Vanes, the Surrounding Pressure Increases, the Fluid Returns to Liquid as these Tiny Bubbles Collapse Violently.
- During this Collapse, High-Velocity Water Jets Impinge onto Surrounding Surfaces.
- The Force of this Impingement Leads to Material Loss, Vibration, Bearing and Seal Wear.
- Over Time, Cavitation Can Create Severe Erosion Problems in Pumps, Valves, Pipes.
 EFFECTS OF CAVITATION
 - Lost Efficiency
 - Noise and Vibration Sounds Like Pumping Gravel or Sand
 - Increased Wear on Seals, Wear Parts, Bearings, etc...
 - Mechanical Damage to Pump !
 - A Pump Cavitates Easier at Higher Altitudes.

Temperature

CONSTANT PRESSURE * WATER BOILS AT 212° F

DROP PRESSURE:

* WATER BOILS AT LOWER TEMP

Maxion. Ol 618-997-2311

CAVITATION | IT'S NOT JUST PUMPS

Cavitation

Cavitations can occur if the pressure of a fluid drops below the vaporization pressure for that fluid. When this occurs some of the fluid will change state from a liquid to a gas and form small vapor bubbles in the fluid itself. If the pressure of this vapor entrained fluid now increases above its vaporization point the vapor bubbles formed in the low pressure region will collapse. These collapsing vapor bubbles release high energy micro-jets that impinge on the surface of the vessel containing the fluid.

Figure 5 shows the formation of vapor bubbles as a fluid passes through an orifice. As the velocity of the fluid increases through the orifice and causes the pressure to decrease below its vaporization pressure, vapor

bubbles are formed in the low pressure region.

Figure 5

COLLAPSING VAPOR BUBBLES

When the velocity of the fluid decreases on the other side of the orifice the pressure increases. When the pressure exceeds the vaporization pressure these vapor bubbles collapse. They are formed in the low pressure region and releases high energy micro jets that impinge on the surface of the pipe. These high energy micro-jets erode the piping walls.

The release of the micro-jets creates random bursts of energy and broadband excitation within the vessel or piping containing the fluid. Cavitations can occur on the suction side of the pump if there is insufficient Net Positive Suction Head to keep the pumped product in a liquid state. It can also occur on the discharge side of the pump and usually caused by low discharge flow; a result of increasing the pump's internal recirculation by throttling the discharge.

EFFECTS OF CAVITATION

- Lost Efficiency
- Noise and Vibration Sounds Like Pumping Gravel or Sand
- Increased Wear on Seals, Wear Parts, Bearings, etc...
- Mechanical Damage to Pump !
- A Pump Cavitates Easier at Higher Altitudes.

618-997-2311

CAVITATION | IT'S NOT JUST PUMPS

- 1. Ensure NPSH_A is Greater than NPSH_R by at Least 2':
 - NPSH_R is Determined by Pump Manufacturer:
 - Minimum Pressure Required at Pump Suction to Keep from Cavitating.
 - Increases with Flow and RPM.
 - NPSH_A = H_A +/- H_Z H_F H_{VP}:
 - H_A = Atmospheric Pressure or Closed Tank or Loop Pressure (33.9' at Sea Level).
 - H_Z = Vertical Distance between the Water Level and the Pump Centerline.
 - H_F = Friction Losses in the Suction Piping.
 - H_{VP} = Liquid Vapor Pressure (~ 0.76' at 68° F).
- 2. Increase the Vertical Distance from the Water Level to Pump Centerline.
- 3. Decrease Suction Pipe Losses by Increasing Suction Pipe ID or Reducing Pipe Length.
- 4. Adjust Liquid Temperature.
- 5. Adjust Pump Speed.

EFFECTS OF CAVITATION

Lost Efficiency

- Noise and Vibration Sounds Like Pumping Gravel or Sand
- Increased Wear on Seals, Wear Parts, Bearings, etc...
- Mechanical Damage to Pump !
- A Pump Cavitates Easier at Higher Altitudes.

- 1. WATER SPEEDS UP AT EYE | LOCALIZED LOW PRESSURE
- 2. MUST ENSURE ENOUGH PRESSURE SO AIR DOESN'T "FLASH OUT"
- 3. NPSH_A IS A MEASURE OF PRESSURE AVAILABLE AT EYE
- 4. NPSH_A > NPSH_R (PERFORMANCE CURVE APPLIES)
- 5. NPSH_A < NPSH_R (PERFORMANCE DROPS | AIR PRESENT):
 - WALK BACK ON CURVE UNTIL NPSH_A = NPSH_R

NPSH _A = P _A + Static Head + Surrace Pressure Head - Vapor Pressure - Friction Loss Atmospheric Pressure: 14.4 99.29 (Accume 500.00 Allows Sure Lows) Static Suction Head: -15.00 -15.00 (Negative for Suction Lift Applications) Gage Pressure: 0.00 0.00 (Tank or Vessel Pressure) Vapor Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) Pressure: 0.00 (NPSHa Must be 2' to 3' Above NPSHr) NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHa: 0.00 (Exek at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)	NPSH _A = P _A + Static Head + Surface Pressure Head - Vapor Pressure - Friction Loss Atmospheric Pressure: 14.4 99.99 (Accurate 500.00 Accurate Social Accurate) Static Suction Head: -15.00 (Negative for Suction Lift Applications) Gage Pressure: 0.00 0.00 (Tank or Vessel Pressure) Vapor Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (Dask at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3')	PUMPS & SUPPLY Marion Ol 2013 Contractor 2018	N	IPSH _A CALCI RED = IN BLUE = CALC	ULATION PUT ULATED	PUMPS & SUPPLY Marion, St 2013 Company 5 no 2018	
Static Suction Head: -15.00 -15.00 (Negative for Suction Lift Applications) Sage Pressure: 0.00 0.00 (Tank or Vessel Pressure) /apor Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (Lock at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3')	Ratics Suction Head: -15.00 -15.00 (Negative for Suction Lift Applications) Gage Pressure: 0.00 0.00 (Tank or Vessel Pressure) /apor Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) Pressure: 0.00 0.00 (Insert on Loss) Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 (Suction Friction Loss) (Suction Friction Loss) Pressure: 0.00 (Link at Pump Curve at Duty Point) (NPSHa - NPSHr: 14.09 NPSHa - NPSHr: 14.09 (Must be 2' to 3) 14.09	$NPSH_A = P_A + S$	tatic Head + Su		re Head - Vapor Pressu		1
Gage Pressure: 0.00 0.00 (Tark or Vessel Pressure) Vapor Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (Losk at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)	Class of Class (Instants for Scalars for Scalars physical on Scalars physic	Static Suction Head	-15.00	-15.00	(Negative for Suction L	ift Applications)	
Vapor Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (Lock at Pump Curve at Duty Point)	Vapor Pressure of Liquid: 1.17 1.17 (Water Vapor Pressure at 80 Degrees) Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (trock at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)	Gage Pressure:	0.00	0.00	(Tank or Vessel Pressu	ire)	12
Friction Loss in Suction: 3.00 3.00 (Suction Friction Loss) NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (Look at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)	Image: State of the second	Vapor Pressure of Liquid:	1.17	1.17	(Water Vapor Pressure	at 80 Degrees)	
NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (Evek at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)	NPSHa: 14.09 (NPSHa Must be 2' to 3' Above NPSHr) NPSHr: 0.00 (Look at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)	Friction Loss in Suction:	3.00	3.00	(Suction Friction Loss)		5_
NPSHr: 0.00 (Leok at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)	NPSHr: 0.00 (Leok at Pump Curve at Duty Point) NPSHa - NPSHr: 14.09 (Must be 2' to 3)		NPSHa:	14.09	(NPSHa Must be 2' to 3	3' Above NPSHr)	08
NPSHa - NPSHr: 14.09 (Must be 2' to 3)	NPSHa - NPSHr: 14.09 (Must be 2' to 3)		NPSHr:	0.00	(Look at Pump Curve a	t Duty Point)	
NPSHa - NPSHr: 14.09 (Must be 2' to 3)	NPSHa - NPSHr: 14.09 (Must be 2' to 3)	124000		5 X 200			
		NF	PSHa - NPSHr:	<u>14.09</u>	(Must be 2' to 3)		2

Altitude Ab	ove Sea Level	Absolute B	arometer	Absol	ute Atmospheric P	ressure	Marion
feet	meters	inches Hg	mm Hg	psia	kg/cm ²	kPa	-manan,
o ¹)	0	29.9	760	14.7	1.03	101	18-997-
500	152	29.4	746	14.4	1.01	99.5	
1000	305	28.9	733	14.2	0.997	97.7	
1500	457	28.3	720	13.9	0.979	96.0	
2000	610	27.8	707	13.7	0.961	94.2	
2500	762	27.3	694	13.4	0.943	92.5	
3000	914	26.8	681	13.2	0.926	90.8	
3500	1067	26.3	669	12.9	0.909	89.1	
4000	1219	25.8	656	12.7	0.893	87.5	
4500	1372	25.4	644	12.5	0.876	85.9	1 Charles and 1
5000	1524	24.9	632	12.2	0.860	84.3	
6000	1829	24.0	609	11.8	0.828	81.2	
7000	2134	23.1	586	11.3	0.797	78.2	
8000	2438	22.2	564	10.9	0.768	75.3	
9000	2743	21.4	543	10.5	0.739	72.4	
10000	3048	20.6	523	10.1	0.711	69.7	
15000	4572	16.9	429	8.29	0.583	57.2	
20000	6096	13.8	349	6.75	0.475	46.6	
25000	7620	11.1	282	5.45	0.384	37.6	
30000	9144	8.89	226	4.36	0.307	30.1	
35000	10668	7.04	179	3.46	0.243	23.8	
40000	12192	5.52	140	2.71	0.191	18.7	
45000	13716	4.28	109	2.10	0.148	14.5	
50000	15240	3.27	83	1.61	0.113	11.1	

Water Vapor Pressure Chart

Temp	erature	Vapor F	ressure
F	С	PSI	FT
40	4.4	.1217	.281
50	10	.1781	.4115
60	15.6	.2563	.592
70	21.1	.3631	.815
80	26.7	.5069	1.17
90	32.2	.6982	1.612
100	37.8	.9492	2.191
110	43.3	1.275	2.942
120	48.9	1.692	3.91
130	54.4	2.223	5.145
140	60	2.889	6.675
150	65.6	3.718	8.56
160	71.1	4.741	10.95
170	76.7	5.992	13.84
180	82.2	7.510	17.35
190	87.8	9.339	21.55
200	93.3	11.50	26.65
212	100	14.70	33.96

GLOBAL 6GST DISCHARGE PRESSURE TABLE

The table below is based on a 15' suction lift. Always try to attain the ideal discharge pressure for the speed in which the pump is running. Adjust the engine speed and make sure the discharge pressure is between the minimum and maximum pressures shown below. Please call for operation over 2000 RPM.

SPEED	MINIMUM PRESSURE	IDEAL PRESSURE	MAXIMUM PRESSURE
1400 RPM	10 PSI	16 PSI	21 PSI
1600 RPM	16 PSI	23 PSI	29 PSI
1800 RPM	23 PSI	32 PSI	39 PSI
2000 RPM	29 PSI	41 PSI	49 PSI

C and C Pumps & Supply, Inc. - St. Louis, MO Branch | 4317 Bridgeton Industrial Drive, Bridgeton, MO 63044 | Office: 314.780.0185 | Mobile: 618.694.2039

GLOBAL 6GST DISCHARGE PRESSURE TABLE

The table below is based on a 15' suction lift. Always try to attain the ideal discharge pressure for the speed in which the pump is running. Adjust the engine speed and make sure the discharge pressure is between the minimum and maximum pressures shown below. Please call for operation over 2000 RPM.

SPEED	MINIMUM PRESSURE	IDEAL PRESSURE	MAXIMUM PRESSURE
1400 RPM	10 PSI	16 PSI	21 PSI
1600 RPM	16 PSI	23 PSI	29 PSI
1800 RPM	23 PSI	32 PSI	39 PSI
2000 RPM	29 PSI	41 PSI	49 PSI

C and C Pumps & Supply, Inc. - St. Louis, MO Branch | 4317 Bridgeton Industrial Drive, Bridgeton, MO 63044 | Office: 314.780.0185 | Mobile: 618.694.2039

GLOBAL 6GST DISCHARGE PRESSURE TABLE

The table below is based on a 15' suction lift Always try to attain the ideal discharge pressure for the speed in which the pump is running. Adjust the engine speed and make sure the discharge pressure is between the minimum and maximum pressures shown below. Please call for operation over 2000 RPM.

	SPEED	MINIMUM PRESSURE	IDEAL PRESSURE	MAXIMUM PRESSURE
⇒	1400 RPM	10 PSI	16 PSI	21 PSI
➡	1600 RPM	16 PSI	23 PSI	29 PSI
⇒	1800 RPM	23 PSI	32 PSI	39 PSI
-	2000 RPM	29 PSI	41 PSI	49 PSI

6"|17 DISCHARGE PIPING EXAMPLE RUN AT 1400 RPM: **1. 23 PSI** X 2.31 + 15' = 68' 2. GO TO 1400 RPM IN TABLE 3. DISCHARGE PRESSURE TOO HIGH 4. SPEED PUMP UP **RUN AT 1600 RPM: 1. 30 PSI** X 2.31 + 15' = 84' 2. GO TO 1600 RPM IN TABLE 3. DISCHARGE PRESSURE TOO HIGH 4. SPEED PUMP UP **RUN AT 1800 RPM: 1. 40 PSI** X 2.31 + 15' = 107' 2. GO TO 1800 RPM IN TABLE 3. DISCHARGE PRESSURE TOO HIGH 4. SPEED PUMP UP **RUN AT 2000 RPM: 1. 50 PSI** X 2.31 + 15' = 130' 2. GO TO 2000 RPM IN TABLE 3. DISCHARGE PRESSURE TOO HIGH 4. CALL SARAH AND BRAD!

PUMPS & SUPPLY

Marion, Ol

618-997-2311

GLOBAL 6GST DISCHARGE PRESSURE TABLE

The table below is based on a 15' suction lift Always try to attain the ideal discharge pressure for the speed in which the pump is running. Adjust the engine speed and make sure the discharge pressure is between the minimum and maximum pressures shown below. Please call for operation over 2000 RPM.

	SPEED	MINIMUM PRESSURE	IDEAL PRESSURE	MAXIMUM PRESSURE
▶□	1400 RPM	10 PSI	16 PSI	21 PSI
╞	1600 RPM	16 PSI	23 PSI	29 PSI
▶ Г	1800 RPM	23 PSI	32 PSI	39 PSI
	2000 RPM	29 PSI	41 PSI	49 PSI

PUMPS & SUPPLY